Электронный игральный кубик. Генератор кубиков - игральные кости онлайн

Кости – одна из древнейших игр в мире, которая насчитывает тысячелетия. Их изначально делали из костей животных, а если верить мифам и легендам, еще и костей человека, отсюда и происходит их название и определенная мистическая аура. В кости играли в Древнем Египте, Риме, Индии, откуда они с развитием торговых и культурных связей проникли в Западный мир. Сегодня самым популярным вариантом игры в кости является крэпс – в него играют как дома, так и в казино, в том числе онлайн-казино. Всего же существует несколько десятков разновидностей этой игры.

Основной принцип игры простой и всем понятен – игроки бросают кости, сумма выпавших очков на костях подсчитывается. Сами по себе игральные кости используются в самых разных настольных играх, заставляя выполнять различные действия на карте. И, конечно, без них не обходится ни одно казино мира. Однако чтобы поиграть в кости можно использовать различные программы и приложения, такие как наш кубик онлайн.

Как бросить кости онлайн?

Что делать, если под рукой не оказалось игральных костей или кто-то любит жульничать с ними? легко решает эту проблему, ведь здесь выбрасывает кости компьютерная программа, и подтасовать результат ее работы невозможно. Цифры от 1 до 6 выпадают случайным образом.

Кроме того, наш симулятор кубика способен на многое, ведь мы разработали множество дополнительных его вариаций. Помимо классического кубика с шестью гранями, у нас есть вариации из четырех, восьми, десяти и даже двадцати сторон, которые были бы просто невозможны в реальной жизни. А такие виртуальные кости способны серьезно разнообразить обычные игры.

Чтобы бросить кубик онлайн на нашем сайте, вам необходимо сделать три простых действия:

  1. Выбрать тип кубика – с гранями от четырех до двадцати;
  2. Задать количество кубиков – от одного до двадцати;
  3. Нажать на кнопку «Бросить кубики».

Онлайн кости имеют множество преимуществ:

  • - во-первых, они всегда будут под рукой, главное, иметь доступ к интернету;
  • - во-вторых, они не рискуют потеряться, закатиться под диван;
  • - в-третьих, они исключают риск мошенничества, поскольку в отличие от обычных кубиков, которые могут падать на грань, всегда дают однозначный результат.

Игральный кубик онлайн – занятное развлечение, способствующее отчасти развитию интуиции. С помощью нашего сервиса вы сможете бросать кости онлайн с большим удобством.



Это устройство основано на генераторе случайных чисел и ориентировано на использование в качестве игры (например в кости, или качестве кубика в логических играх), а так же его можно использовать для определения победителя в каком-либо конкурсе путем жеребьевки…

Конструкция очень проста, и повторяема практически любым начинающим радиолюбителем, который имеет самый малый опыт работы с паяльником и знает специфику пайки микросхем. Она заключается в следующем:

1)Жало паяльника должно быть заземлено

2)Не нагревать вывод микросхемы дольше 5-8 секунд

Первый пункт можно опустить, если микросхема не боится статики (но к МК это не относится).

Итак, вот собственно схема девайса:

Сразу акцентирую внимание на отсутствии токоограничивающих резисторов, включенных последовательно со светодиодами. В данной схеме в них нет надобности, так как при напряжении питания 3,7V через светодиоды течет относительно небольшой ток, который микроконтроллер в состоянии выдержать (но если вы все же хотите перестраховаться, то на плате вполне достаточно места для включения последовательно со светодиодами резисторов в smd исполнении).

Плата устройства:

Как видите, размеры у платы довольно скромные (6 x 4,5 см).Если вы будете использовать печатную плату с топологией, которая приведена в этой статье, то внешний вид собранной платы будет таков:

Так как в этой конструкции плата выполнена в двухстороннем варианте, то может оказаться проблемной процедура впаивания панельки для микроконтроллера. В своей практике я пользуюсь таким методом соединения двух слоев платы:

Данный способ неплохо подходит для соединения маломощных печатных проводников, а так же там, где количество соединений такого типа невелико, иначе очень сложно все это пропаивать.

Теперь о прошивке. Я разрабатывал программу для МК в среде Flowcode (проект к статье прилагается, там же имеется и проект в PROTEUSе). Программа работает следующим образом: при подаче питания на МК программа запускается, и ожидает нажатия кнопки. Как только кнопка будет нажата, вызывается переменная gsch(тип byte),и ей присваивается значение (это программный ГСЧ). Далее происходит оценка сгенерированного числа, с интервалом в 42 бита(если число <=42 битам, тогда на кубике высвечивается одна точка, если число больше 42, но меньше 84, то высвечивается две точки и т.д. Так же после отпускания кнопки число будет светиться до следующего нажатия.

Теперь о fuse-битах:

Так выглядит окно их установки в программе PonyProg2000 .

Детали, замены. В качестве управляющего элемента я использовал микроконтроллер семейства AVR, ATTINY2313, кварцевый резонатор нужно взять на частоту 8MHz, конденсаторы емкостью 22-33 пф, что же касается светодиодов, то они должны быть маломощными на номинальное напряжение 2V.

Известно немало игр, в которых, например, число очков, набранных игроком. определяется броском игрального кубика. Нетрудно сделать и электронный «кубик» генератор случайных чисел. Схемы таких генераторов и описания встречаются в радиолюбительской литературе.

В последнее время получила популярность игровая система «Эпоха битв». Для неё в масштабе 1:72 выпускаются фигурки воинов наиболее интересных исторических эпох, осадные орудия, элементы местности и крепостей Теперь игрок может, с известной долей исторического реализма, попробовать себя на месте Мильтиада или какого-нибудь из наполеоновских маршалов.

Правила «Эпохи битв» довольно сложны Вероятность многих событий - попадания или промаха лучника, пробития доспехов и т.п. определяется с помощью двадцатигранного (!) кубика. Заменить его в случае потери или порчи затруднительно. К тому же, когда кубик оказывается на мягкой поверхности (например на ковре), чётко определить его верхнюю грань становится не так-то просто. Кроме того, для ряда целей в игре используется и классический шестигранный кубик. Всё это и побудило меня разработать конструкцию электронного «кубика», способного работать как 20-, так и как 6-гранный.

Однако реализация этой, простой на первый взгляд задачи далась не просто. Требуемые результаты были достигнуты только на четвёртом варианте устройства, который и предлагается вниманию читателей. Думаю, конструкция будет интересна и удобна радиоэлектронщикам - любителям настольных сражений.

Принцип действия устройства традиционный: на элементах D1.3, D1.4 собран задающий мультивибратор с частотой в несколько килогерц. При нажатии на кнопку S1 на вывод 5 элемента D1.2 подаётся высокий логический уровень, и импульсы мультивибратора проходят на счётчик D2. При отпускании кнопки счётчик останавливается в каком-то случайном положении, которое и индицируется. Для передачи чисел до 20 необходимо 5 двоичных разрядов, большинство же ТТЛ (транзисторно-транзисторная логика) счётчиков четырёхразрядные. Поэтому здесь применена КМОП микросхема К176ИЕ2. Этот счётчик экономичен, имеет в двоичном режиме счёта как раз 5 разрядов. а умеренное быстродействие обеспечивает хорошую помехоустойчивость. Для справки об управляющих входах микросхемы D2. На них поданы логические 1. Вход Е (выв. 2) - переключатель «счёт/загрузка», выбран режим счёта. Вход 2/10 (выв. 1) - переключатель двоичного или десятичного режима счёта, выбран двоичный режим.

1 - лицевая панель; 2 - декоративная накладка; 3 - светодиод (20 шт.); 4 - печатная плата; 5 -Z-образная скоба установки включателя (стальная пластина s1); 6 - крепление платы и скобы к корпусу (болт М3 с гайкой, 2 компл.); S1 - включатель; S2 - переключатель режимов

Большинство подобных устройств использует классический вывод на цифровые индикаторы. Однако он создаёт немало проблем, в частности из-за того, что там счёт начинается с 0, а не с 1, как это принято в игровых кубиках. Громоздкой получается и схема выбора диапазонов счёта. Поэтому пришлось остановиться на позиционной индикации. Но применённая микросхема дешифрирует только А двоичных разряда и, соответственно, имеет 16 выходных каналов. Как же быть с числами от 17 до 20? Классическое решение - поставить ещё один дешифратор громоздко и неэкономично, а главное - выходы КМОП счётчика просто-напросто не потянут сразу два адресных входа «дубовых» ТТЛ микросхем. А что, если использовать дешифратор D3 «по второму разу»? Благодаря элементу D1.1 мы имеем старший разряд адреса, как в прямом, так и в инверсном виде Теперь уже просто, с помощью транзисторов VT1, VТ2, включить нужную группу светодиодов. в зависимости от диапазона чисел. Этих групп три: HL 1-6 работают при 0 в пятом двоичном разряде, HL 17-20 - при 1, ну а на HL 7-16 питание можно подавать постоянно. Величина тока через светодиоды определяется резисторами R6, R8, R9. В устройстве он составляет около 7 мА. Это обеспечивает достаточную яркость индикации и в то же время не перегружает даже маломощную ТТЛШ (транзисторно-транзисторная логика с барьером Шоттки) микросхему К155ИДЗ. При использовании светодиодов нового поколения на гетероструктурах сопротивления упомянутых резисторов можно увеличить вдвое-втрое.

Выбор режима осуществляется переключателем S2. Как только счёт доходит до «запрещённых» 7 или 21 очка, через R11 на вход каскада на VT3 поступает лог. 0. Сигнал инвертируется, и подаётся вход сброса счётчика. Помимо логической функции каскад на VT3 выполняет и ещё одну функцию. Дело в том, что одной из проблем при совместной работе КМОП и ТТЛ микросхем является недостаточно высокое напряжение логической 1 последних. Здесь же оно усиливается практически до напряжения питания. В логике работы этого узла есть ещё одна особенность: в принятой системе дешифрации число 21 «отражается» на число 5, что может привести к преждевременному сбросу счётчика. Поэтому в 20-гранном режиме на VT3 через R10 подаётся инвертированный пятый разряд счётчика. Благодаря этому, при числах, меньших 16, транзистор открывается - и на входе сброса, счётчика будет лог.0. независимо от других сигналов. Во время отсчёта (при нажатой кнопке S1) светодиоды выбранного диапазона слегка подсвечиваются импульсами тока, «пробегающими» по ним Это позволяет убедиться в исправности схемы и всех светодиодов.

При использовании двухрежимного электронного кубика возможна следующая ошибка, работа в 6-гранном режиме, когда нужен 20-гранный. В результате может получиться, что мощная баллиста категорически откажется пробивать доспехи пехотинцев. Поэтому необходима эффективная индикация 6-гранного режима. Никакие ухищрения с цифровыми индикаторами не могут исключить ошибку по рассеянности. В предлагаемой же конструкции индикация 6-гранного режима осуществляется светодиодом HL7, являющимся своею рода визуальным ограничителем включённого диапазона отсчёта. Не заметить, что вместо одного искомого горят сразу два светодиода, невозможно, и ото - ещё одно достоинство принятой позиционной системы индикации. Чтобы не закоротить на землю выв. 7D3, он отделён от переключателя диодом.

Стабилизатор напряжения питания 5В (микросхема DА1) установлен непосредственно на плате устройства. Благодаря этому, для питания устройства можно использовать практически любые сетевые адаптеры с выходным напряжением в пределах 9 - 12 В, благо потребляемый ток не превышает 80 мА. Приемлемый вариант - 2 - 3 батареи 336, соединённые последовательно. Но в этом случае в конструкцию надо будет ввести выключатель питания.

О деталях: транзисторы VT1, VT2 могут быть любыми из серий КТ361, КТ203, VТ3 - n-p-n структуры, серий КТ315, КТ301, КТ312. Микросхема К176ЛА7 заменима на К561ЛА7. D3 - 155-й или 1533-й серии. Такие замены не требуют изменения разводки печатного монтажа. Только К1533ИДЗ может быть в более узком корпусе, но расположение выводов то же.

Однако может статься, что приобретение нужных микросхем окажется затруднительным. Практически вся продаваемая сейчас в магазинах «логика» - 1988 - 1992 гг. выпуска, и эти запасы кончаются. Остаётся заменять микросхемы на другие, аналогичного назначения. Так, в качестве D2 можно применить микросхему К176ИЕ1 - незатейливый 6-разрядный двоичный счётчик. В качестве D1 - микросхему с тремя элементами И-НЕ. В этом случае элемент D1.2 исключается, сигнал разрешения счёта заводится на один из входов D1.3. Применение D1.2 хорошо тем, что он ещё и формирует импульсы мультивибратора. Но счётчики будут работать и в таком сокращённом варианте схемы.

Напоминаю о необходимости соблюдения правил монтажа полупроводниковых приборов: КМОП микросхемы следует хранить завёрнутыми в фольгу, паять низковольтным паяльником с заземленным жалом. Особенно это касается микросхем ранних разработок, когда конструкторы неохотно шли на установку элементов защиты из-за снижения быстродействия В случаях применения паяных или в чём-то подозрительных микросхем используйте панельки. Светодиоды, особенно в пластмассовом корпусе, паять следует не ближе 10 мм от корпуса, желательно с использованим дополнительного теплоотвода.

Переключатель S2 – любой с тремя группами контактов на переключение. В рассматриваемом устройстве применены 2 кнопки П2К с зависимой фиксацией. Его контакты-штырьки с одной стороны укорачиваются. Кнопка S1 - типа КМ 1-1 или ей подобная. Подбор цветов светодиодов (например, первые 6 -другого цвета) читатели могут произвести по своему усмотрению. Конденсаторы С3, С4 - любые керамические, подходящие по габаритам.

Конструкция. Поскольку в устройстве не использовались супертехнологии вроде фотолитографии и металлизации отверстий, то развести все проводники печатным монтажом не удалось Оставшиеся соединения - 3 и 4 разряды распаивались монтажным проводом (удобнее всего МГТФ). На остро заточенном пинцете формируется колечко и надевается на вывод микросхемы. Остаётся только прикоснуться к нему паяльником. Аналогично большинство проводов к светодиодам также припаяно непосредственно к выводам D3, тем более, что индикаторы в корпусе устройства находятся со стороны фольги.

К DА1 прикручен радиатор из небольшой алюминиевой пластинки. В корпусе напротив него желательно сделать вентиляционные отверстия. Что касается корпуса и лицевой панели электронного «кубика», то они выполнены из коробочек, вырезанных из задней пластмассовой стенки старого телевизора.

Плата расположена деталями вниз и крепится к корпусу с помощью прямоугольной стойки и двух болтов М3 с потайными головками. Эту стойку, как и стойки крепления S2, лучше сделать из полистирола, что позволит приклеить их к корпусу. После этого к плате двумя гайками прикручивается металлическая скоба с кнопкой S1. Кнопка расположена так, что при нажатии на корпус она срабатывает.

Убедитесь в отсутствии заливов припоя и замыканий между дорожками. Проверьте полярность всех светодиодов. Правильно смонтированное из исправных деталей устройство не требует налаживания. Окончательную проверку правильности сборки и функционирования устройства можно провести очень эффектно: подключите параллельно С1 конденсатор ёмкостью около 0,33 мкФ. Нажмите S1 Если все собрано правильно. то вы сможете наблюдать красивый эффект бегущих огней в диапазоне, выбранном переключателем S2.

Лицевая панель прибора покрашена золотистой эмалью металлик под бронзу и стилизована под древнегреческий щит - гоплон.

Да поможет вам Афина Паллада (греческая мифическая богиня войны и победы, а также мудрости, знаний, искусств и ремёсел) в техническом творчестве и в бою!

А. ЛИСОВ. г. Иваново

  • 20.09.2014

    Предлагаемый автогенераторный ИИП (импульсный источник питания) имеет малые габариты и высокий КПД. Его особенностью является то, что магнитопровод импульсного трансформатора работает с заходом в область насыщения. При проектировании автогенераторных ИИП в большинстве случаев мощный трансформатор используют в линейном режиме, а маломощный переключательный — в режиме насыщении магнитопровода. Отдельные обмотки этих …

  • 17.03.2017

    Схема мультивибратора на элементах И-НЕ показана на рисунке 1. Схема имеет два состояния: в одном состоянии элемент DD1.1 закрыт, а DD1.2 открыт, в другом — все происходит наоборот. Например, если элемент DD1.1 закрыт, DD1.2 открыт, при этом конденсатор С2 заряжается выходным током элемента DD1.1, протекающим через резистор R2. Напряжение на …

  • 22.06.2015

    Шунты измерительные стационарные взаимозаменяемые 75ШИС (далее - шунты), номинальным падением напряжения 75 мВ предназначены для расширения диапазонов измерений показывающих регистрирующих приборов постоянного тока, применяемых на различных объектах сферы обороны, безопасности промышленности. ОПИСАНИЕ Конструктивно шунты выполнены виде перемычек манганина, соединенных методом пайки наконечниками из латуни или меди, укрепленных на пластмассовом основании …

  • 06.10.2014

    Это простой индикатор уровня сигнала для звуковоспроизводящей аппаратуры, схема адаптирована к различным потребностям пользователей. Может быть адаптирована к различным уровням входного сигнала- TR1 (регулировка уровня входного напряжения), TR2 (регулировка усиления). Принцип работы: после усиления ОУ на TL017 сигнал выпрямляется диодами D1-D2 (в дальнейшем используется только положительная полуволна сигнала), далее сигнал …

Игральные кости используются человеком тысячи лет.

В 21 веке новые технологии позволяют бросить кубик в любое удобное время, а при наличии доступа в Интернет в удобном месте. Игральный кубик всегда с вами дома или в дороге.

Генератор игральных костей позволяет кинуть онлайн от 1-го до 4-х кубиков.

Кинуть кубик онлайн по-честному

При использовании реальных костей может использоваться ловкость рук или специально сделанные кубики с перевесом на одну из сторон. Например, можно раскрутить кубик вдоль одной из осей, и тогда измениться распределение вероятностей. Особенностью наших виртуальных кубиков является применение програмного генератора псевдослучайных чисел. Это позволяет обеспечить, действительно, случайный вариант выпадения того или этого результата.

А если вы добавите эту страницу в закладки, то ваши онлайн игральные кубики никуда не потеряются и будут в нужный момент всегда под рукой!

Некоторые люди приспособились применять игральные кости онлайн для гадания или составления прогнозов и гороскопов.

Весёлого настроения, хорошего дня и удачи!